Human Neutrophil Cytoskeletal Dynamics and Contractility Actively Contribute to Trans-Endothelial Migration
نویسندگان
چکیده
Transmigration through the endothelium is a key step in the immune response. In our recent work, the mechanical properties of the subendothelial matrix and biophysical state of the endothelium have been identified as key modulators of leukocyte trans-endothelial migration. Here, we demonstrated that neutrophil contractile forces and cytoskeletal dynamics also play an active biophysical role during transmigration through endothelial cell-cell junctions. Using our previously-established model for leukocyte transmigration, we first discovered that >93% of human neutrophils preferentially exploit the paracellular mode of transmigration in our in vitro model, and that is independent of subendothelial matrix stiffness. We demonstrated that inhibition of actin polymerization or depolymerization completely blocks transmigration, thus establishing a critical role for neutrophil actin dynamics in transmigration. Next, inhibition of neutrophil myosin II-mediated contractile forces renders 44% of neutrophils incapable of retracting their trailing edge under the endothelium for several minutes after the majority of the neutrophil transmigrates. Meanwhile, inhibition of neutrophil contractile forces or stabilization of microtubules doubles the time to complete transmigration for the first neutrophils to cross the endothelium. Notably, the time to complete transmigration is significantly reduced for subsequent neutrophils that cross through the same path as a previous neutrophil and is less dependent on neutrophil contractile forces and microtubule dynamics. These results suggest that the first neutrophil induces a gap in endothelial cell-cell adhesions, which "opens the door" in the endothelium and facilitates transmigration of subsequent neutrophils through the same hole. Collectively, this work demonstrates that neutrophils play an active biophysical role during the transmigration step of the immune response.
منابع مشابه
p21-Activated Kinase (PAK) Regulates Cytoskeletal Reorganization and Directional Migration in Human Neutrophils
Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In...
متن کاملVE-Cadherin Disassembly and Cell Contractility in the Endothelium are Necessary for Barrier Disruption Induced by Tumor Cells
During metastasis, breakdown of the endothelial barrier is critical for tumor cell extravasation through blood vessel walls and is mediated by a combination of tumor secreted soluble factors and receptor-ligand interactions. However, a complete mechanism governing tumor cell transendothelial migration remains unclear. Here, we investigate the roles of tumor-associated signals in regulating endo...
متن کاملA Role for P21-Activated Kinase in Endothelial Cell Migration
The serine/threonine p21-activated kinase (PAK) is an effector for Rac and Cdc42, but its role in regulating cytoskeletal organization has been controversial. To address this issue, we investigated the role of PAK in migration of microvascular endothelial cells. We found that a dominant negative (DN) mutant of PAK significantly inhibited cell migration and increased stress fibers and focal adhe...
متن کاملLeukocytes Breach Endothelial Barriers by Insertion of Nuclear Lobes and Disassembly of Endothelial Actin Filaments.
The endothelial cytoskeleton is a barrier for leukocyte transendothelial migration (TEM). Mononuclear and polymorphonuclear leukocytes generate gaps of similar micron-scale size when squeezing through inflamed endothelial barriers in vitro and in vivo. To elucidate how leukocytes squeeze through these barriers, we co-tracked the endothelial actin filaments and leukocyte nuclei in real time. Nuc...
متن کاملProinflammatory effects of copper deficiency on neutrophils and lung endothelial cells.
Dietary copper deficiency increases the accumulation of circulating neutrophils in the rat lung microcirculation. This process includes neutrophil adhesion to, migration along, and emigration though the vascular endothelium. The current study was designed to examine the role of copper in each of these steps. Neutrophils were isolated from rats fed either a copper-adequate (CuA, 6.1 microg Cu/g ...
متن کامل